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Following the lines of thoughi. of l<. J. Cvet,anovi6 and Y. Amenomiya [in “Advances in 
Catalysis” (D. 1). Eley, H. Pines, and P. B. Weisz, Eds.), Vol. 17, p. 103. Academic Press, 
New York, 19671, a mathematical analysis of second-order temperature-programmed desorp- 
tion (TPl>) spectra in the case of freely occurring readsorpt.ion is presented. Some critical 
remarks are made about the use of equations relating the temperat,ure of the peak maxima 
to the enthalpies of adsorption, both for first- and second-order desorption kinetics. The shapes 
of the theoretical lines describing second-order desorpt,ion at several values of enthalpy of 
adsorpt.ion and init,ial coverage are calculat’ed. 

INTlLOL>UCTION 

In the litcraturc (1-G), scvcral methods 
arc prcscntcd for the analysis of dcsorption 
spectra obtained in tcmpcraturc-pro- 
grammcd dcsorption (TPD). Most of thcsc 
deal with first- and second-order dcsorption 
from monocnergctic surface s&es in the 
absence of readsorption, an experimental 
situation often cncountcred in UHV stud& 
on dcsorption of gases from m&al films and 
well-defined crystallographic planes. 

Cvctanovii: and Amcnumiya (3, 4) dc- 
signed an apparatus with which the TPD 
spectra of gases dcsorbing from oxides, 
metal powders, and supported catalysts 
arc mcasurcd in a stream of inert carrier 
gas (helium or argon). The equations 
dcrivcd by thcsc authors dcscribc the 
dcsorption kinrtics both when readsorption 
is absent and when readsorption can occur 

jreely. 

1 To whom all correspondence should be addressed. 

In t,hc formcr case, the flo\v rate of the 
carrier gas is chosen so high that the partial 
prcssurc of the dcsorbing gas above the 
adsorbent is low enough to limit the rate 
of rradsorption to so small a fraction of the 
rate of dcsorption t,hat, in fact, pure dcsorp- 
tion kinetics are studied. In the second case, 
the flow rate of the carrier gas is chosen 
so low as t,o render the rate of adsorption 
practically qua1 to the ratr of dcsorption; 
in t,his situation, mc, in fact,, mcasurcs the 
rate at which the adsorption equilibrium 
shifts to t,hc gas-phaw side. 

In &udying hydrogen chcmisorption on 
m&aIs, the activat.ion cncrgy of adsorption 
is usually zero, and a simple preliminary 
calculat,ion on the basis of Eyring’s (7) 
reaction-rate theory shows t,hat drsorption 
without wadsorption cannot be realized 
unless the flow ratr of the carrier gas is set 
at lo4 liters/g of sample/hr or more, which 
is hardly feasible. Therefore, in analyzing 
spectra of tcmpcrat,ure-programmad hy- 
drogen drsorption from metals or mctal-on- 
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carrier catalysts, one should make allow- 
ance for the occurrence of readsorption. 

In this article, we present a mathematical 
analysis of TPD spectra for second-order 
desorption attended by readsorpt,ion. The 
results will be compared with the equations 
published for the first-order case by 
Cvetanovic and Amenomiya (S, 4) ; further 
critical remarks will be made about the 
practical application of equations relating 
the tcmpcraturc at the maximum of the 
desorption peak, TM, to the cnthalpy of 
adsorption. Finally, the so-called lineshapc 
analysis of desorption peaks will be 
discussed. 

THEORY FOR SECOND-ORDER TPD WITH 
FREELY OCCURRING READSORPTION 

WC proceed from the assumption that, 
as in most TPD studies, the heating 
schedules are linear with time. Then : 

T = To + Pt, (1) 

where T is the temperature at time t, TO 
is the temperature at time zero (start of 
the desorption run), t is t.he time, and p 
is the heating rate coefficient, which is 
chosen between 1 and 30’C/min. 

The rate of desorption of an adsorbate 
dissociatively adsorbed, under condit.ions 
in which the desorbed gas can readsorb 
freely, may be represented by: 

d0 
- -$ = k&92 - x-2- (1 - 8)2, (2) 

PO 

where 13 is the coverage of a certain ad- 
sorbed state, t is the time, I&I is the rate 
constant for desorption, k, is the rate 
constant for adsorption, and p/p0 is the 
pressure of the desorbing gas above the 
adsorbent divided by the total pressure 
(1 atm). 

Equation (2) is valid only if the enthal- 
pies and entropies of activation during the 
desorption process are constant, with the 
exception of the localization entropy, 
renresented by the Langmuir terms o2 and 

(1 - 13)~. Furthermore, thcrc should bc 
enough mobility in the adsorbed layer to 
bring the dissociativcly adsorbed spccics 
together by means of an activated surface 
migration process, the kinetics of which 
should not be rate determining. The 
activation energy of surface migration 
being only about 10% of the activation 
energy of desorption, this will usually be 
the case. Lapujoulade and Neil (8) have 
shown that, in t,he case of hydrogen chcmi- 
sorption on Ni (ill), the partition function 
of activated migration of hydrogen atoms 
over the surface is about 1, which means 
that the translational entropy inherent in 
this migration is virtually 0. 

It is appropriate to choose the pressure 
divided by 1 atm as a variable in Eq. (2). 
Then, kd and k, in Eq. (2) both have the 
dimension seconds-‘, so that, in the equa- 
tion describing t(he adsorption equilibrium : 

K = k&t, = CXP (AS/R) 

X exp (- AHIRT), (3) 

K, the reciprocal adsorption equilibrium 
constant, becomes a dimensionless number, 
just like exp(AS/R) and exp(-AH/RT). 
In Eq. (3), AS is the differential entropy of 
adsorption, and AH is the differential 
enthalpy of adsorption. 

Equation (2) may be written in the form 
of a material balance by equating the 
amount of gas detected in the carrier gas 
stream per unit time to the amount of gas 
desorbing per unit time: 

FC = - Vsu,,, (de/dt) = v,V,k,# 

- v,,V&,C(l - e>2. (4) 

In Eq. (4), Vs is the volume of the solid 
phase in the catalyst bed, u,,, is the amount 
of gas adsorbed at full coverage per unit 
volume of the solid phase in a certain 
adsorbed state, F is the carrier gas flow 
rate, and C is the mole fraction of the 
desorbing gas in the I-atm carrier gas 
stream and, hence, equal to the hydrogen 
pressure divided by 1 atm. 
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CvctanoviE and Amcnomiya (Y), in 
presenting the first-order analog of Eq. (4), 
made a mistake in that they omitted v,,, in 
the second right-hand term of their Eqs. 
(3) and (4). 

Combining Eqs. (1) and (4), WC obtain: 

- v&3 (cle/dT) = V,,,kdP 
- v,,,lz,C(l - !!?)2. (5) 

From Eqs. (4) and (5) it follows that 

C = - (vsv,,~plF) (de/dT), 

and, from Eq. (4) : 

(6) 

C = V,v,,,kde2/‘[F + Vsv,,,k,(l - Q2]. (7) 

When readsorption occurs freely, the net 
amount of desorbing gas per unit t’imc, FC, 
is much less than the amount readsorbing 
per unit time, V,v,,,k,C(l - 0)2; Eq. (7) 
then reduces to 

kde2 02 
f-J--------= K 

ka(i - e)2 (1 - e)2’ 
(a 

where K, defined by Eq. (3), is t,hc re- 
ciprocal value of the conventional cqui- 
librium constant of adsorption, or 

K = A* exp (-AH/RT), w  

wit,h A* standing for cxp (AS/R). From 
Eqs. (6) and (8) it follows that: 

de FK 82 Fe” 
-- = __ --__ 

ClT ~,,v.p (1 - e)2 = __ ~,,,I~,p(i - e)z 

X A* exp( - AH/RT). (10) 

At the peak maximum dC/dT = 0; 
from Eqs. (8) and (lo), thcrcfore we 
obtain : 

vnlVF+P (1 - eM)3 AH 
Kh,* = __ ____- -- 

F 2eM RlX 

= A* exp(-AH/RTM), (11) 

where KM is the value of K at T = TM, the 
temperature at the peak maximum, and 
oM is the coverage at T = TM. 

Equation (11) may be written in the 
logarit,hmic form : 

AH 
2 log Thl - log p = 

2.303RTRI 

(1 - hd3Va~AH 
--I. 

20blFA*R 
(12) 

For jirst-order desorption with freely occur- 
ring readsorption, Cvetanovii: and Ameno- 
miya (3) arrived at: 

AH 
2 log Thl - log p = --___ 

2.303RT~ 

+ log 
(1 - B,ll)V’,AH 
______- 1 FA*R ’ 

(13) 

Recalculation showed this cquat,ion to bc 
correct, except for omission of t’hc factor 
v,‘, in the second term on the right-hand side 
of Eq. (13). 

Application of Eqs. (12) and (15’) to the 
Determir~ation of AH 

Measuring TPD spcct#ra in the range of 
freely occurring readsorption has t,he advan- 
tage that the heat of adsorption, AH, can, 
under favorable expcriment,al condiGons, 
be directly derived from the peak maximum 
by means of Eqs. (12) or (13). Measure- 
me& in the absence of readsorption are 
more difficult t,o perform and, moreover, 
provide a less characteristic adsorption 
paramct,rr, viz., the activation energy of 
dcsorption, which is equal to the heat of 
adsorption only if the adsorption is 
nonactivated. 

Since, as will be shown later, ehl varies 
very slightly with large variations of AH, 
the slope of the plot of 2 log TM - log B 
against l/Tb~ should give the enthalpy of 
adsorption, at const’ant F and at constant 
ei. The coverage Bi is the initial surface 
coverage which is highly determinative for 
t,he value of &. 
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Similarly, variation of & at constant F 
and /3 or variation of F at constant 13~ 
and p provides a means of determining AH 
from the shift in the position of the peak 
maximum TM. 

Some critical remarks have to bc made 
with respect to the above methods of AH 
dctcrmination. First, & and F appear in 
Eqs. (12) and (13) as logarit,hms, so t’hat 
an experimental variat)ion of these terms 
by a factor of at lcast 100 is rcquircd to 
determine AH with rcasonablc accuracy; in 
practice, however, such large variations 
are difficult to realize. Second, in the deriva- 
tion of Eqs. (12) and (13), it was tacitly 
assumed that A* = cxp (AS/R) and, hcncc, 
AS are temperature indcpcndcnt, but this 
does not hold in many cases. This point 
will bc discussed further in the Results. 

An alternate method for calculating AH 
from the position of the peak maximum is 
simply to fill in all measurable quantities, 

P, TM,OM1 Vs,v,,,, and F,in Eq. (12) or (13) 
and to calculate A* from the diffcrcntial 
adsorption entropy at temperature TM. Of 
course, this can only bc done if t’he differ- 
ential adsorption entropy is known with 
reasonable accuracy. Further, 6M has to bc 
calculated from the intcgratcd peak surface 
arca up to T = TM, divided by the total 
peak surface area at 8i = 1. In the succeed- 

TABLE 1 

Values of Surface Coverages at Peak Maximum 
(0,) for Second-Order Desorption with Freely 
Occurring Readsorption at Various Initial Coverages 
Ceil 

e*hf eM 

ei = 1.0 0; = 0.75 Bi = 0.50 Bi = 0.25 

10 0.6006 0.5018 0.3185 0.1512 
20 0.4959 0.4430 0.2935 0.1412 
33.33 0.4537 0.4143 0.2812 0.1365 
40 0.4430 0.4066 0.2779 0.1353 
50 0.4324 0.3988 0.2745 0.1340 
66.67 0.4217 0.3908 0.2709 0.1326 

100 0.4110 0.3827 0.2672 0.1312 

ing paper (9) we shall deal with the 
application of this procedure to a TPD 
study of hydrogen adsorpt,ion on palladium. 

The Theoretic& Lineshape in Second-Order 
Desorption 

Instead of determining AH from the 
position of the peak maximum, it can also 
be found by comparing the theoretical 
lincshapcs for various values of AH with 
the measured lineshapcs. As will be cx- 
plaincd below, this can bc done without 
knowledge of the adsorpt’ion entropy, pro- 
vided this entropy is tcmperaturc in- 
dcpcndcnt. Furthcrmorc, theoretical line 
shapes may serve as a tool in establishing 
whether the dcsorption is first or second 
order in coverage, or whether WC arc dealing 
with a single adsorption state or with 
a combination of states dcsorbing 
simultaneously. 

First, it is necessary to cvaluatc &, the 
covcragc of an adsorbed state at T = TM, 
as a function of & and AH. Let us write 
2 = AH/RT and E*M = AH/RTM and 
introduce the following normalized quanti- 
tics: c, = c/CM, where CM is the mole 
fraction of the dcsorbing gas at the peak 
maximum; I’, = T/T&f, whcrc TM is the 
temperature when dC/dT = 0. We can then 
transform Eq. (10) into: 

de 82 F 
--=-- __ TMA* 

dT, (I - ey ~d93 
X exp( - e*M/T,), (14) 

and, on substituting the value (F/V,V,,J~) 
from Eq. (II), into: 

de 82 (1 - ed3 --= ___- e*M 
(ET, (1 - e>2 2eM 

X exp(e*M) exp(--*M/Tn). (15) 

It is important to note that the latter 
substitution causes A* in Eq. (11) and A* 
in Eq. (14) to cancel each other out, so 
that all following equations, including the 
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equation describing the line shape, are 
entropy independent. Howcvcr, this st,atc- 
merit is valid only if A* in Ey. (14) is 
tcmpcraturc independent, since A* in IQ. 
(11) is cxrlusiwly wlakd to thcl cantropy 
at the peak maximum ?‘>I. 

Integration of Eq. (15) bctwccn the 

limits 0; and &,I and b(%woon t,hc corrwpond- 
ing tcmpcraturc limits T = 0 and T,, 
= T/T%* = 1 gives: 

2&f 

.I 

OhI (1 - e>:! 
----_- --_^_ cl0 = c* 
(1 - e&d3 8, 8” 

hl cq~(E”hl) 

I 

X exp( - t*~I/T,,)dT,,, (16) 

or 

The values of the dcfinitc intctgral 1(l) have 
been computed for ebb = 10, 20, 33.33, 
40, 50, 66.67, and 100. For each of thcsc 
e*M values, dhz has been cvalustcd from 
Eq. (17) for four diffrwnt initial surface 
cowragtrs (0i = 1, 0.75, 0.50, and 0.25). 
The wsult,s arc listed in Table 1. 

If &I is lm~ux, Ey. (15) can bc solved 
for 0 as a funct,ion of C*JI, Bit and T,,. Via the 
transformation .c = e*hI(l - l/T,,), WC 
find : 

tl0 fy 

t1.c (1 - e>z 

x (l - ohf)R 
exp(.c) 

___-__ 
2oar (1 - x/E*n*)’ 

, (18) 

(I-- Lie,, - TJ 
2 

- (Oh1 - 6) 1 
IntcgratSion of Eq. (1X) bctwcn tho 

limit#s ehf and 8 and bctwccn the corrc- 
sponding tcmpcraturo limits I% = 0 (for 
T,, = 1 and honcc 2’ = Tbf) and x yields: 

0.3 0.4 0.5 06 07 06 09 10 11 12 13 1.4 15 1.6 

FIG. 1. Coucentr&iou of desorbing gas as a function of temperature (time), for second-order 
desorption with freely occurring readsorption. Normalized peak shapes are presented for various 
values of ebb. Initial coverage Bi = 1. 
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0.5 0.6 0.7 0.6 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 
Tfl 

FIG. 2. As Fig. 1, except Bi = 0.75. 

Equation (19) was used for computing the Now, Cn can bc calculated as a function 
values of 0. of T,, for chosen values of E*hI’and Bi. 

From Eq. (S), we can derive (with 
c, = C/C,) : RESULTS 

82 (1 - w2 
Figure 1 shows the normaliecd peak 

c, = ~__ exp(le). (20) shapes for second-order dcsorpt’ion with 
(1 - e)2 ezM freely occurring rcadsorption, computed 

FIG. 3. AS Fig. 1, except Bi = 0.25. 
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as indicated above for differ& values of 

e*M, but for Bi = 1 in all CBSPS. Similarly, 
Figs. 2 and 3 give the results for Bi = 0.75 
and 0.25, respectively. It is interesting to 
compare our second-order results \\-it,11 
those prcsentcd by Cvctanovi6 and :hcwo- 
miya (3) for first-order dcsorption mit,h 
freely occurring readsorption. This is done 
by plotting the half-value prak Ividth (Lo., 
the width of the peaks at C, = 0.,5, in 
T/Tw units) as a fun&on of the initial 
coverage Bi, as sho\vn in Ipig. 4 for bot,h 
first- and second-order dcsorption. It is 
seen that second-order peaks arc apprctci- 
ably broader t#han first-order peaks and 
that, cvcn if t(hc initial coveragct is lmo\vn 
\vith a ratSher 10~ accuracy, a comparison 
bctwccn measured and thcorctt~ical peak 
shapes enables us t#o dist.inguish bctwecn 
first- and second-order dcsorpt,ion. 

WC xvish to cmphasizc hcrc that Figs. 
1, 2, and 3 describe t’he peak shapcas only if 
the cnthalpy a& entropy of adsorption arc 
indcpcndent of coverage and tc~mpcrature. 
This also holds for the lint! shapc>s prcscnted 
by Cvctanovii: and Amenomiya (3) for 
first-order dcsorption \vit,h frcbrl>r occurring 
rcadsorpt,ion. Constancy of adSlJrpti(Jn en- 
tropy \vas not mcntioncd as a rcquircmcnt 
by thcsc: aut,hors. 

In tho cast of dissociative adsorption of, 
c’.g., hydrogrn, on metals liltc nick(,l, 

palladium, and plat,inum, the total cntrop3 

of the hydrogen gas is lost on adsorption, 
the gas being adsorbed to immobilit~~ 

00, 111, with the co~~scc~uc~~cc that the: 

adsorpt,ion entropy equals the entropy of 
the hydrogen gas at the rctduced prcssurc. 

The statistical thermodynamic expression 
for A* then reads [see Ilof. (7)]: 

A* = exp(Sm/R) = 
(%rrrd;T)‘~~~b,, 

_-- 
h” 

0 02 04 06 08 10 
- 9i 

FIG. 4. &If-value peak width, as a funct,ion of 
initial coverage, for first- and second-order theo- 
retical lineshapes, at BALI = 20. The first-order half- 
value peak widths are taken from Ref. (s). 

8n’Ikl’ 
X-- 

IL? 
yul~g*l”c:, (21) 

and t,hc tBcmpcrat,urc dcpcnd(ncc of A* can 
simply bc \vritt,cn as : 

A* = constant + T”.“. L (22) 

It is cvidont from t,his that,, if t’hc enthalpy 
of adsorption is dctcrmined from the shift 
in the position of the peak maximum TRf, 
a serious mistake can bc made, because the 
left-hand side of Eq. (12) now reads 
4.5 log T,,I - log /3, instead of 2 log Tnf 
- log ,8. The influcncc that the tcmpcraturc 

T” 

FIG. :i. Comparison of the lineshnpes at E*~I = 20 
with (dashed line) and without (solid line) taking 
inlo aeoount the temperature dependence of the 
adsorption enlropy. 
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dependence of the entropy may have on the 
theoretical lincshapcs is illustrated in Fig. 
5, where the lincshape for e*M = 20 and 
Bi = 1, taken from Fig. 1 and valid for a 
temperature-independent adsorption en- 
tropy, is compared with the lincshape 
found when the entropy is temperature 
dependent, as is the case for dissociative 
hydrogen adsorption to tot.al immobility. 
In the calculation of the lincshapc, it is 
assumed that the adsorption entropy 
equals the cxpcrimcntally detcrmincd cn- 
tropy of the gas, in this case, hydrogen (12) : 

“K SOT (e.u.) 

300 31.00 

400 32.98 

500 34.53 

600 35.79 

These standard cntropics obey Eqs. (21) 
and (22). 

The temperature dcpendcncc of A* 
changes the definite integral 1~1) in Eq. 
(17) into: 

J 

1 
I (1) = exp( - e*M/T,). T2.5,dT,. (23) 

0- 

From the revised Eq. (23), new values of 
enl can bc derived. 

The dcfinitc integral in Eq. (19) now 
reads : 

z exp (X> 
-- dx. 
(1 - x/C*M)4’5 

(24) 

Numerical solution of this definite integral 
and introduction of a new value of 8~ into 
Eq. (19) allows one to compute values of 
B as a function of z. Now, calculation of 
C, is straightforward. The results are 
plotted in Fig. 5. 

It is seen that, in normalized coordinates, 
the falling branch of the peak remains 
practically unchanged. However, a marked 
influence on the rising part of the peak is 
observed. The half-value peak width does 
not change appreciably. 

A more detailed discussion of the 

conscquenccs of a t(,nlpc~raturc-dc,pc~Ildcnt 
adsorption cintropy will bc published 
clsewhcw. 

DISCIJSSION 

Tcmpcraturo-programmed dcsorption 
with freely occurring readsorption in a 
stream of inert gas has various advantages. 
The method seems to lend itself very well 
for studying chcmisorption on industrial 
samples, such as finely divided metals on 
oxide carriers or on metal blacks or sponges. 
As explained in this article, it is possible, 
in t,heory at least, to dctcrminc, for each 
adsorbed state, the population, the order 
of the desorption process, and the cn- 
thalpy of adsorption. 

An important aspect of peak-shape 
analysis is that deviations from the ideal 
peak shape may point to nonvalidity of 
the suppositions made, i.e., constancy of 
the enthalpy and entropy as functions of 
coverage and temperature. Further, peak- 
shape analysis can assist in the proper 
separat,ion of composite dcsorption peaks. 

In the succeeding paper (9), WC demon- 
strate the application of the mathematical 
analysis prcscntcd in this article in the 
study of hydrogen chcmisorption on pal- 
ladium and palladium-on-carrier catalysts. 
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