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Following the lines of thought of R. J. Cvetanovié and Y. Amenomiya [in “Advances in
Catalysis” (D. D. Eley, H. Pines, and P. B. Weisz, Eds.), Vol. 17, p. 103. Academic Press,
New York, 19677, a mathematical analysis of second-order temperature-programmed desorp-
tion (TPD) spectra in the case of freely oceurring readsorption is presented. Some critical
remarks are made about the use of equations relating the temperature of the peak maxima
to the enthalpies of adsorption, both for first- and second-order desorption kinetics. The shapes
of the theoretical lines describing second-order desorption at several values of enthalpy of

adsorption and initial coverage are calculated.

INTRODUCTION

In the literature (1-6), several methods
are presented for the analysis of desorption
spectra  obtained in  temperature-pro-
grammed desorption (TPD). Most of these
deal with first- and second-order desorption
from monoenergetic surface sites in the
absence of readsorption, an cxperimental
situation often encountered in UHYV studies
on desorption of gases from metal films and
well-defined crystallographic planes.

Cvetanovié and Amenomiya (3, 4) de-
signed an apparatus with which the TPD
spectra of gases desorbing from oxides,
metal powders, and supported catalysts
arc measured in a strcam of inert carrier
gas (helium or argon). The equations
derived by these authors deseribe the
desorption kineties both when readsorption
is absent and when readsorption can occur
freely.

1 To whom all correspondence should be addressed.

In the former case, the flow rate of the
carrier gas is chosen so high that the partial
pressure of the desorbing gas above the
adsorbent is low enough to limit the rate
of readsorption to so small a fraction of the
rate of desorption that, in fact, pure desorp-
tion kineties are studied. In the second case,
the flow rate of the carrier gas is chosen
80 low as to render the rate of adsorption
practically equal to the rate of desorption;
in this situation, one, in fact, measures the
rate at which the adsorption equilibrium
shifts to the gas-phase side.

In studying hydrogen chemisorption on
metals, the activation energy of adsorption
is usually zero, and a simple preliminary
calculation on the basis of Eyring’s (7)
reaction-rate theory shows that desorption
without readsorption cannot be realized
unless the flow rate of the carrier gas is set
at 10 liters/g of sample/hr or more, which
is hardly feasible. Therefore, in analyzing
speetra of temperature-programmed hy-
drogen desorption from metals or metal-on-
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carrier catalysts, one should make allow-
ance for the occurrence of readsorption.

In this article, we present a mathematical
analysis of TPD spectra for second-order
desorption attended by readsorption. The
results will be compared with the equations
published for the first-order case by
Cvetanovié and Amenomiya (3, 4) ; further
critical remarks will be made about the
practical application of equations relating
the temperature at the maximum of the
desorption peak, T'v, to the enthalpy of
adsorption. Finally, the so-called lineshape
analysis of desorption peaks will be
discussed.

THEORY FOR SECOND-ORDER TPD WITH
FREELY OCCURRING READSORPTION

We proceed from the assumption that,
as in most TPD studies, the heating
schedules are linear with time. Then:

where T is the temperature at time £, T
is the temperature at time zero (start of
the desorption run), ¢ is the time, and 3
is the heating rate coefficient, which is
chosen between 1 and 30°C/min.

The rate of desorption of an adsorbate
dissociatively adsorbed, under conditions
in which the desorbed gas can readsorb
freely, may be represented by :

de p
— — = kgt — k. — (1 — 6)%
dt Po

(2)

where 8 is the coverage of a certain ad-
sorbed state, ¢ is the time, kq is the rate
constant for desorption, k, is the rate
constant for adsorption, and p/pe is the
pressure of the desorbing gas above the
adsorbent divided by the total pressure
(1 atm).

Equation (2) is valid only if the enthal-
pies and entropies of activation during the
desorption process are constant, with the
exception of the localization entropy,
represented by the Langmuir terms ¢? and
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(1 — 6% Furthermore, there should be
enough mobility in the adsorbed layer to
bring the dissociatively adsorbed species
together by means of an activated surface
migration process, the kinetics of which
should not be rate determining. The
activation energy of surface migration
being only about 109, of the activation
energy of desorption, this will usually be
the case. Lapujoulade and Neil (8) have
shown that, in the case of hydrogen chemi-
sorption on Ni (111), the partition function
of activated migration of hydrogen atoms
over the surface is about 1, which means
that the translational entropy inherent in
this migration is virtually 0.

It is appropriate to choose the pressure
divided by 1 atm as a variable in Eq. (2).
Then, kg and &, in Eq. (2) both have the
dimension seconds™, so that, in the equa-
tion describing the adsorption equilibrium :

K = kq/ka = cxp (AS/R)

X exp (—AH/RT), (3)

K, the reciprocal adsorption equilibrium
constant, becomes a dimensionless number,
just like exp(AS/R) and exp(—AH/RT).
In Eq. (3), AS is the differential entropy of
adsorption, and AH is the differential
enthalpy of adsorption.

Equation (2) may be written in the form
of a material balance by equating the
amount of gas detected in the carrier gas
stream per unit time to the amount of gas
desorbing per unit time:

FC = —Van(d8/dt) = vaVika?
— 0 Vk O — )2 (4)

In Eq. (4), V, is the volume of the solid
phase in the catalyst bed, »,, is the amount
of gas adsorbed at full coverage per unit
volume of the solid phase in a certain
adsorbed state, F is the carrier gas flow
rate, and C is the mole fraction of the
desorbing gas in the l-atm carrier gas
stream and, hence, equal to the hydrogen
pressure divided by 1 atm.



SECOND-ORDER DESORPTION KINETICS IN TPD

Cvetanovié and Amenomiya (3), in
presenting the first-order analog of Eq. (4),
made a mistake in that they omitted v, in
the second right-hand term of their Eqgs.
(3) and (4).

Combining Eqs. (1) and (4), we obtain:

—0,8(d8/dT) = v,k,6
— vk C(L — 6)% (5)
From Eqgs. (4) and (5) it follows that
C = — (00uB8/F)(d8/dT), (6)
and, from Eq. (4):
C = Voukat?/[F + Vouk.(1 — 0)7]. (7)

When readsorption oceurs freely, the net
amount of desorbing gas per unit time, FC,
is much less than the amount readsorbing
per unit time, Vw.k,C(1 — 6)%; Eq. (7)
then reduces to

]Cd02 6>

- -K .8
ka(]- - 0)2 (1 - 9)2 ( )

where K, defined by Eq. (3), is the re-
ciprocal value of the conventional cqui-
librium constant of adsorption, or

K = A*exp (—AH/RT), (9)

with A* standing for exp (AS/R). From
Eqs. (6) and (8) it follows that :
de FK 6* Fe?
dT v, VB8 — 6 v,V B(1 — 6)?

X A*exp(—AH/RT). (10)

At the peak maximum dC/dT =0;

from Egs. (8) and (10), therefore we
obtain :
vaVeB (1 — Om)° AH
v 2y RTw

= A*exp(—AH/RTw), (11)

where Ky is the value of K at T = T, the
temperature at the peak maximum, and
B is the coverage at T = T'm.
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Equation (11) may be written in the

logarithmic form:

AH

2log Ty — logB = ————
gom 2.303R Ty

(]- - 01\1)3VBUIUAH
]. (12)

+ logl:
20mFA*R

For first-order desorption with freely occur-
ring readsorption, Cvetanovié and Ameno-
miya (3) arrived at:

log Tay — 1 —
2log —log B = —
" 2.303R Ty

N
0 A— .
g FA*R

Recaleulation showed this equation to be
correct, except for omission of the factor
v, 10t the second term on the right-hand side
of Eq. (13).

Application of Egs. (12) and (13) to the
Determination of AH

Measuring TPD speetra in the range of
freely occurring readsorption has the advan-
tage that the heat of adsorption, AH, can,
under favorable experimental conditions,
be direetly derived from the peak maximum
by means of Eqs. (12) or (13). Measure-
ments in the absence of readsorption are
more difficult to perform and, moreover,
provide a less characteristic adsorption
parameter, viz., the activation cnergy of
desorption, which is equal to the heat of
adsorption only if the adsorption is
nonactivated.

Since, as will be shown later, #y varies
very slightly with large variations of AH,
the slope of the plot of 2log Tw — log 8
against 1/Ty should give the enthalpy of
adsorption, at constant ¥ and at constant
6;. The coverage 6; is the initial surface
coverage which is highly determinative for
the value of 6.
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Similarly, variation of 8y at constant F
and B or variation of F at constant fu
and g8 provides a means of determining AH
from the shift in the position of the peak
maximum Ty.

Some critical remarks have to be made
with respect to the above methods of AH
determination. First, 6y and F appear in
Eqgs. (12) and (13) as logarithms, so that
an experimental variation of these terms
by a factor of at least 100 is required to
determine AH with reasonable accuracy ; in
practice, however, such large variations
are difficult to realize. Sccond, in the deriva-
tion of Eqs. (12) and (13), it was tacitly
assumed that A* = exp (AS/R) and, henee,
AS are temperature independent, but this
does not hold in many cases. This point
will be discussed further in the Results.

An alternate method for caleulating AH
from the position of the peak maximum is
simply to fill in all measurable quantitics,
8, T, 6m, Vi, ¥, and F, in Eq. (12) or (13)
and to calculate A* from the differential
adsorption entropy at temperature T'y. Of
course, this can only be done if the differ-
ential adsorption entropy is known with
reasonable accuracy. Further, 6y has to be
calculated from the integrated peak surface
arca up to T = T, divided by the total
peak surface area at §; = 1. In the succced-

TABLE 1

Values of Surface Coverages at Peak Maximum
(8y) for Second-Order Desorption with Freely
Occurring Readsorption at Various Initial Coverages

(63)

ey Oum

0; =10 6; =075 6; =0.50 6; = 0.25

10 0.6006 0.5018 0.3185 0.1512
20 0.4959 0.4430 0.2935 0.1412
33.33 04537 0.4143 0.2812 0.1365
40 0.4430 0.4066 0.2779 0.1353
50 0.4324 0.3988 0.2745 0.1340
66.67  0.4217 0.3908 0.2709 0.1326
100 0.3827 0.2672 0.1312

0.4110
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ing paper (9) we shall deal with the
application of this procedure to a TPD
study of hydrogen adsorption on palladium.

The Theoretical Lineshape in Second-Order
Desorption

Instead of determining AH from the
position of the peak maximum, it can also
be found by comparing the theorctical
lineshapes for various values of AH with
the measured lineshapes. As will be ex-
plained below, this can be done without
knowledge of the adsorption entropy, pro-
vided this cntropy is temperaturc in-
dependent.  Furthermore, theoretical line
shapes may serve as a tool in cstablishing
whether the desorption is first or sceond
order in coverage, or whether we are dealing
with a single adsorption state or with
a combination of states desorbing
simultaneously.

First, it is necessary to cvaluate 6y, the
coverage of an adsorbed state at T = Ty,
as a function of 6; and AH. Let us write
& = AH/RT and ey = AH/RTy and
introduce the following normalized quanti-
ties: Cy = C/Cym, where Cy is the mole
fraction of the desorbing gas at the peak
maximum; T, = T/Ty, where Ty is the
temperature when dC/dT = 0. We can then
transform Eq. (10) into:

de 6 F
— = TmA*
dTn (1 — 0)2v.,VB
X exp(—e*m/Th),

and, on substituting the value (F/V..6)
from Eq. (11), into:

— 3
(1 0M) .

€' M
20y

(14)

dé 6*
dTe (1 — 6)
X exp(e*nm) exp(—e*m/Th).

(15)

It is important to note that the latter
substitution causes 4* in Eq. (11) and A*
in Eq. (14) to cancel each other out, so
that all following equations, including the
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equation describing the line shape, are
entropy independent. However, this state-
ment is valid only if A* in Eq. (14) is
temperature independent, since A* in Eq.
(11) is exclusively related to the entropy
at the peak maximum 7Ty

Integration of Eq. (15) between the
limits 8; and 6y and between the correspond-

ing temperature limits 7 =0 and 7T,
=T/Tu = 1 gives:
20 v (1 — 9)2

A8 = €*n exp(e*ar)

(]. - 0}\1)3 IR 02

L
X_/ CXI)(“E*M/Tn)dTny (16)
or ’

20m

G -)
(1 — on)® 5;: - #i
Onm\?
+ In (——) - (OM it 0,)}
0;

= G*M eXp(e*M ' I(l)),

(17)

where [y is the definite integral

1
[ exp(e*m/Tn)dT .
0

|
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The values of the definite integral 71y have
been computed for ¥y = 10, 20, 33.33,
40, 50, 66.67, and 100. For cach of these
e*m valucs, 6y has been cvaluated from
Eq. (17) for four different initial surface
coverages (6; = 1, 0.75, 0.50, and 0.25).
The results arc listed in Table 1.

If 6 is known, Eq. (15) can be solved
for 6 as a funetion of ¢*y, i, and T,. Via the

transformation @ = *n(1 — 1/7,), we
find;
de 6*
dx - (1 — 6)2
(1 —0m)®  exp(e)
. , (18)
20m (1 — a/efu)?

where 8 = 6y at & = 0.

Integration of Eqg. (18) between the
limits 0y and 6 and between the corre-
sponding temperature limits z = 0 (for
Ty =1 and hence T = Tw) and z yiclds:

1 1
0 ———2Ind =60y —— — 21n by
f 01

(1 — 0:\1)3 /I
20!\1 0

exp(x)

19
(1 - .17/6*M)2 ( )

dx.

03 04 05 06 07 08B 09

10 11 12 1.3 14 15 16
Tn

Fia. 1. Concentration of desorbing gas as a function of temperature (time), for second-order
desorption with freely occurring readsorption. Normalized peak shapes are presented for various

values of e*y. Initial coverage 6; = 1.
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Fic. 2. As Fig. 1, except 8; = 0.75.

Equation (19) was used for computing the Now, €, can be calculated as a function

values of 4. of T', for chosen values of ey and 6;.
From Eq. (8), we can derive (with
C, = C/Cy): RESULTS
£ (L= 6y Figure 1 shows the normalized peak
= M exp(a). (20) shapes for sccond-order desorption with
1—62 ¢y freely occurring readsorption, computed

Tn

Fia. 3. As Fig. 1, except 6; = 0.25.



SECOND-ORDER DESORPTION KINETICS IN TPD

as indicated above for different values of
€', but for 6; = 1 in all cascs. Similarly,
Figs. 2 and 3 give the results for 8; = 0.75
and 0.25, respectively. It is interesting to
comparc our sccond-order results with
those presented by Cvetanovié and Ameno-
miya (3) for first-order desorption with
frecly occurring readsorption. This is done
by plotting the half-value peak width (i.c.,
the width of the peaks at C, = 0.5, in
T/Twm units) as a function of the initial
coverage i, as shown in Iig. 4 for both
first- and second-order desorption. It is
scen that second-order peaks are appreci-
ably broader than first-order peaks and
that, even if the initial coverage is known
with a rather low accuracy, a comparison
between measured and theoretical peak
shapes enables us to distinguish between
first- and second-order desorption.

We wish to emphasize here that Figs.
1, 2, and 3 describe the peak shapes only if
the enthalpy and entropy of adsorption are
independent of coverage and temperature.
This also holds for the line shapes presented
by Cvetanovié and Amenomiya (3) for
first-order desorption with freely occurring
rcadsorption. Constancy of adsorption cen-
tropy was not mentioned as a requirement
by these authors.

Influence of the Temperature Dependence of
the Entropy on the Theoretical Lineshape

In the casec of dissociative adsorption of,
e.g., hydrogen, on metals like nickel,
palladium, and platinum, the total entropy
of the hydrogen gas is lost on adsorption,
the gas being adsorbed to immobility
(10, 11), with the consequence that the
adsorption entropy equals the entropy of
the hydrogen gas at the reduced pressure.
The statistical thermodynamic expression
for A* then reads [sce Ref. (7)7]:

A* = exp(Si/R) = ——M——
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€%
" 20

04

halt value Peak width

(T/TM ~units)

L second order

—//hrst order

e —

T

Fia. 4. Half-value peak width, as a function of
initial coverage, for first- and second-order theo-
retical lineshapes, at ¢*y = 20. The first-order half-
value peak widths are taken from Ref. (3).

8w kT
X ﬁ} ;

2

(21)

Jol* Jnuey

and the temperature dependence of A* can
simply be written as:

A* = constant- T2,

(22)
It is evident from this that, if the enthalpy
of adsorption is determined from the shift
in the position of the peak maximum T,
a serious mistake can be made, becausce the
left-hand side of Eq. (12) now reads
4.5log Ty — log B, instcad of 2log Ty
— log 8. The influence that the temperature

«

— AT () /// |
-em A% LconstT 275 L 1
8 -1 l
x_ |
€4%- 20 i
-~ 3.5
I
|
|
'
/ i
l’ 1
R (vl A1
0.4 0.5 05 a7 <& 09 1.0 11 12 13 14 15 1.6
Tn
—— ——

Fia. 5. Comparison of the lineshapes at e*y = 20
with (dashed line) and without (solid line) taking
into account the temperature dependence of the
adsorption entropy.



372

dependence of the entropy may have on the
theoretical lineshapes is illustrated in Fig.
5, where the lincshape for ¢*u = 20 and
6; = 1, taken from Fig. 1 and valid for a
temperature-independent adsorption en-
tropy, is compared with the lineshape
found when the entropy is temperature
dependent, as is the case for dissociative
hydrogen adsorption to total immobility.
In the calculation of the lineshape, it is
assumed that the adsorption entropy
equals the experimentally determined en-
tropy of the gas, in this case, hydrogen (12):

°K Sty (e.u.)
300 31.00
400 32.98
500 34.53
600 35.79

These standard entropics obey Egs. (21)
and (22).

The temperature dependence of A*
changes the definite integral I, in Eq.
(17) into:

1
I =/ exp(—e*n/Tn) - T?5ud Tn.  (23)
.

From the revised Eq. (23), new values of
6n can be derived.
The definite integral in Eq. (19) now

reads:
exp()

f (1 — a/e*m)*®

Numerical solution of this definite integral
and introduction of a new value of 8y into
Eq. (19) allows one to compute values of
6 as a function of z. Now, calculation of
(. is straightforward. The results arc
plotted in Fig. 5

It is scen that, in normalized coordinates,
the falling branch of the peak remains
practically unchanged. However, a marked
influence on the rising part of the peak is
observed. The half-value peak width does
not change appreciably.

A more detailed discussion

dz. (24)

of the
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consequences of a temperature-dependent
adsorption entropy will be published
clsewhere.

DISCUSSION

Temperature-programmed  desorption
with frecly occurring readsorption in a
stream of inert gas has various advantages.
The method seems to lend itself very well
for studying chemisorption on industrial
samples, such as finely divided metals on
oxide carriers or on metal blacks or sponges.
As explained in this article, it is possible,
in theory at least, to determine, for cach
adsorbed state, the population, the order
of the desorption process, and the cn-
thalpy of adsorption.

An important aspeet of peak-shape
analysis is that deviations from the ideal
peak shape may point to nonvalidity of
the suppositions made, i.e., constancy of
the enthalpy and entropy as functions of
coverage and temperature. Further, peak-
shape analysis can assist in the proper
separation of composite desorption peaks.

In the succeceding paper (9), we demon-
stratc the application of the mathematical
analysis presented in this article in the
study of hydrogen chemisorption on pal-
ladium and palladium-on-carrier catalysts.
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